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Robust synchronization
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The new open-plus-close-lod@PCL) method of control complex dynamic systems developed by Jackson
and GrosyPhysica D85, 1 (1995] is used for synchronization of two identical oscillators. The synchroniza-
tion is efficient for a very large level of noise. Numerical examples are given for two Lorenz systems and two
logistic maps. The coupling is analytically justifi§§1063-651X97)05809-1

PACS numbes): 05.45+b

There is a lot of work done on driving linear and nonlin- [whereS(t) =0 or 1 as a switchassurex(t)—g(t) for any
ear system§1], but it was usually used just to obtain differ- smoothg(t). So, in principle, any two oscillators can be
ent types of dynamic§2,3] including chaotic behaviof4].  synchronized. A Lorenz system can be drived to oscillate as
The idea of using a specific driving with the aim to obtain aa Rossler one or the inverse, but the driving t& () can be
desired behavior of a nonlinear system has been proposed kyrge. This paper presents applications of the OPCL method
Hubler and Luschef5] and then has been developed andfor synchronization of twdqor several identical oscillators.
optimized[6]. Control of complex dynamic systems has beenA comment was madg8] about Hubler action that “the term
the subject of a considerable interest during the past fews large and convergence is not assured.” If the goal dynam-
years[7,8]. The synchronization is initiated by Pecora andics g(t) is different from the dynamics of the original system
Carroll [9] and was experimentally implemented by Cuomo(1) (Lorenz vs Rossler, for exampléhen the term given by
and Oppenhein{10]. Now several different methods are Eq.(3) can be largg16]. If the goal dynamics is the dynam-
known for coupling systems together in order to synchronizecs of a identical system or is the prerecorded dynarffi@$
[11,12. The present status, new improvements, and applicaef the same system, then the tefB) is zero. The specific
tions are presented in recent paptr3,14. form of the driving K(g,x,t) (4) assures the convergence

Recently, Jackson and Gropl5] have developed a new x(t)—g(t) [15] and in addition it can be arbitrarily small if
powerful method of control: the open-plus-close-loopx(0)—g(0) is small enough. So, here are the answers to the
(OPCL) method. It can be applied to any model-based syshoth parts of the above-mentioned commigit

tem | have to emphasize that the freedom of choo#nghe
only condition is to have eigenvalues with a negative real

%zF(x f), XeRn (1) par) can be used in order to simplify the teid{g,x,t) (4).

dt e So, if dF;/dg, is constant, we can také&;=dF;/dg, and

K(g,x,t) is simpler. The driving term2)—(4) assures the
that can be drived. The driving ter(t) involves the sum convergence fox(0)—g(0) small enough. For particular
of two actions; systems it can be proveif it can be found to be a Liapunov
function that the systems can be synchronized for any or
D(t)=H(g,dg/dt,t) +K(g,x,t). (2)  resonable initial difference(0)—g(0) [15,18. The OPCL
) _ _ method was previously used in migration contrd8] for a
The open-loop actiofHubler action [6] is Chua circuit that simulates a smart pacemaker. The above
strategy is applied in the following for two identical Lorenz
H(g,dg/dt,t)=dg/dt—F(g,t) (3) systems.

- . Let us consider the master system:
and the special linear feedba@iosed-loop [15] is

X=s(Y=X), Y=rX—-Y—XZ, Z=XY-bz, (6)
K(g,x,t)=

dF

d_g_A>[g(t)_X(t)]' 4 where 6.r,b)=(16,45.6,4). The matrixdF; /dg,) with g
=(X,Y,Z) for Eq. (6) is

where g(t) e R" is an arbitrary smooth functiofthe goal

dynamicg andA is a constant matrix with negative real part -s s 0
eigenvalues. It was provdd5] that the driven system r-z -1 -X
Y X -b
dX—F t)+S(t)D(t) (5)
dt xt) This matrix has four variable terms. 8ohas to have at least
four terms corresponding to these terms. The other constant
terms ofK can be zero by an appropriate choice of terms of
*Electronic address: igrosu@uaic.ro A. This means tha will contain just one terngthe simplest
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FIG. 1. Y(t) andy(t) described by Eqs(6) and (8), respec-

tively; initial conditions X(0)=Y(0)=2Z(0)=1; x(0)=y(0)

=z(0)=—5. S=0 for the first 1850 time step§=1 afterwards.

Time step=0.001.p= —60. There is no noise.

form) if the nonlinearity in the system is represented just by
one term of one variablésee the example for the Duffing

oscillator below.

In addition A has to have a parametegp, that can be
adjusted in order that its eigenvalues have a negative re%I
part. The parametey is set in one position of variable terms

in (dF;/dg,) in order to keep the number of termsKnto no
more than four(for this casé Now, the matrix is

-S S 0
A=|[r+p -1 0 |, (7
0 0 -b

and the drivedslave system is
x=s(y—x),

y=rx—y—xz+S(t)[X(z—2)+(Z+p)(x—X)],

z=xy—bz+S()[ - X(y=Y)=Y(x—X)], (8)

wherep is a parameter that has to be determined in order to

have ,y,z)—(X,Y,Z). S(t)=0 or 1 as a switch.

The matrix(7) has eigenvalues with a negative real part if

p<l-r. (9

Let us noteu=(uq,u,,u3)=(x—X,y—Y,z—Z). Foru
the system can be obtained

Up=s(U;—Uy), Up=(r+p)u;—u—Usus,
03: _bU3+ U1U2.

Choosing the Liapunov functioh = 1/2(u2+u3+u3), we
have

dL

i —[sWB+us—(r+s+p)uyu,]—bui.

The conditiondL/dt<0 gives us

—J4s—r—s<p<.4s—r-s. (10)
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FIG. 2. The same as in Fig. 1, but each equation of E&)sand
(8) is completed additively with a noise ter(h4) C=500.

So for anyp given by Eq.(10) and any initial conditions of
Egs. (6) and (8), u—0, it means that X,y,z)—(X,Y,Z).
Both conditiong9) and((10)) assure X,y,z)—(X,Y,Z), but
while condition(9) is for small enougH x(0)—X(0),y(0)
—Y(0),z(0)—Z(0)], condition(10) is for any initial condi-
ons of the system&) and(8). This can be verified numeri-
cally (see Fig. 1 If the initial conditions are very different
then the driving term can be large but once the coupling is
set on the difference is smaller and smaller. If we can do just
small drivings we have to wait until the difference between
the two states is small and then to €t 1. For chaotic
systems with one attractor and for any initial conditions of
the true systems sooner or later will appear a situation when
the two systems are close enough in order to$utl. For
chaotic systems with many attractors and if the dynamics are
on different attractors, the method works too, but the driving
term can be large for a short tini&8].

The method can be applied to the synchronization of two
drived Duffing oscillators. Kapitaniakl1] successfully syn-
chronized two identical oscillators using a simple feedback:

X+aX+X3=B cog, (11)

X+ax+x3=B cog+K(X—x), (11)
with a=0.1, B=10 and 0.0xK<0.1 determined numeri-
cally. The present method can do the same synchronization:

X+aX+X3=B codg, (12)
X+ax+x3=B cog+(3X?—p)(x—X), (13

for any a>0 and p>0 (this result can be proved just by
subtracting the above relations and keeping only linear terms
in u=x—X). It can be observed that the above coupling is
practical. A direct application of OPC[15] gives a driving
in velocity equation that is hard to realize. This is the main
result obtained by a proper choice of the mathix

In addition, if we add a noise term

C,, (14



56 BRIEF REPORTS

10 20 30 40 n

FIG. 3. — X, [described by Eq(15)] andx,, [described by Eq.
(16)] vs n, respectivelyS=0 for the first 20 iterationsX;=0.77,
x1=0.55,c=3.88,p=0.1. There is no noise X, ,n) is marked by

a big circle and %,,,n) by a small one.

where.- is a random numbee(—1,1), in each equation of
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FIG. 4. —X,, [described by Eq(15)] andx, [described by Eq.
(20)] vs n with a;=0.04,a,=0.04; p, c, S are the same as in Fig.
3.

manage just small drivingsD,=Sp—c(1—2X,)](X,
—X,), we have to wait untilx,— X, is small enough and

Egs.(6) and(8), we still have synchronization for very large then we can puS= 1. Once the coupling is set on the driving

C (see Fig. 2 For C=500 the slave system follows the decreases. In addition, the synchronization is obtained even
master system in a reasonable manner; so it looks robust. if Eq. (16) is modified like(see Fig. 4

It seems that is not so evident to write a control for dis-
crete systems equivalent with Eq®)—(5). Nevertheless we

can synchronize two logistic dynamics.
The master system

Xn+1=CXp(1—Xp) (15
and the slavédriven) system is
Xp+1=CXn(1—Xq)+S[p—c(1—2Xy) (X, — Xp), (16)

with ¢=3.88 and|p|<1.
With u,=x,—X,, from Egs.(15) and(16) we have

Un1= PUy—CUJ. (17)

A Liapunov functionL (u)=u? and the conditiori19]

L(Un+1)—L(upy <0 (18)
gives the result
p—1 p+1
T<u”<T (19

Xn+1=CXn(1—X,) + S{[ay+p—c(1—2X,)]
X (Xn_ Xn) + 3-2/"}, (20)

where.- is a uniform random number betweenl and 1.
This result led us to label this synchronization as robust.

It seems that the above results give a partial answer to the
unpredictibility problem of chaotic systems: if we have a
previous recording of a dynamics we can reach it by syn-
chronization even in a noisy environment.

In conclusion, this paper presents a new method of syn-
chronization based on the OPCL method of conitt@l. The
synchronization is realized with a precise coupling—so it
does not need any trial and error, physical intuition, empiri-
cal determination of proportionality factor, calculation of
conditional Liapunov exponents, etc. In addition, the syn-
chronization is still obtained in a high level noise. There are
no limitations on the dimensions of the systems.
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