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Robust synchronization
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The new open-plus-close-loop~OPCL! method of control complex dynamic systems developed by Jackson
and Grosu@Physica D85, 1 ~1995!# is used for synchronization of two identical oscillators. The synchroniza-
tion is efficient for a very large level of noise. Numerical examples are given for two Lorenz systems and two
logistic maps. The coupling is analytically justified.@S1063-651X~97!05809-1#

PACS number~s!: 05.45.1b
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There is a lot of work done on driving linear and nonli
ear systems@1#, but it was usually used just to obtain diffe
ent types of dynamics@2,3# including chaotic behavior@4#.
The idea of using a specific driving with the aim to obtain
desired behavior of a nonlinear system has been propose
Hubler and Luscher@5# and then has been developed a
optimized@6#. Control of complex dynamic systems has be
the subject of a considerable interest during the past
years@7,8#. The synchronization is initiated by Pecora a
Carroll @9# and was experimentally implemented by Cuom
and Oppenheim@10#. Now several different methods ar
known for coupling systems together in order to synchron
@11,12#. The present status, new improvements, and appl
tions are presented in recent papers@13,14#.

Recently, Jackson and Grosu@15# have developed a new
powerful method of control: the open-plus-close-lo
~OPCL! method. It can be applied to any model-based s
tem

dx

dt
5F~x,t !, xPRn ~1!

that can be drived. The driving termD(t) involves the sum
of two actions;

D~ t !5H~g,dg/dt,t !1K ~g,x,t !. ~2!

The open-loop action~Hubler action! @6# is

H~g,dg/dt,t !5dg/dt2F~g,t ! ~3!

and the special linear feedback~closed-loop! @15# is

K ~g,x,t !5S dF

dg
2AD @g~ t !2x~ t !#, ~4!

where g(t)PRn is an arbitrary smooth function~the goal
dynamics! andA is a constant matrix with negative real pa
eigenvalues. It was proved@15# that the driven system

dx

dt
5F~x,t !1S~ t !D~ t ! ~5!
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@whereS(t)50 or 1 as a switch# assuresx(t)→g(t) for any
smooth g(t). So, in principle, any two oscillators can b
synchronized. A Lorenz system can be drived to oscillate
a Rossler one or the inverse, but the driving termD(t) can be
large. This paper presents applications of the OPCL met
for synchronization of two~or several! identical oscillators.
A comment was made@8# about Hubler action that ‘‘the term
is large and convergence is not assured.’’ If the goal dyna
ics g(t) is different from the dynamics of the original syste
~1! ~Lorenz vs Rossler, for example! then the term given by
Eq. ~3! can be large@16#. If the goal dynamics is the dynam
ics of a identical system or is the prerecorded dynamics@17#
of the same system, then the term~3! is zero. The specific
form of the driving K (g,x,t) ~4! assures the convergenc
x(t)→g(t) @15# and in addition it can be arbitrarily small i
x(0)2g(0) is small enough. So, here are the answers to
both parts of the above-mentioned comment@8#.

I have to emphasize that the freedom of choosingA ~the
only condition is to have eigenvalues with a negative r
part! can be used in order to simplify the termK (g,x,t) ~4!.
So, if dFi /dgk is constant, we can takeAik5dFi /dgk and
K (g,x,t) is simpler. The driving term~2!–~4! assures the
convergence forx(0)2g(0) small enough. For particula
systems it can be proved~if it can be found to be a Liapunov
function! that the systems can be synchronized for any
resonable initial differencex(0)2g(0) @15,18#. The OPCL
method was previously used in migration control@18# for a
Chua circuit that simulates a smart pacemaker. The ab
strategy is applied in the following for two identical Loren
systems.

Let us consider the master system:

Ẋ5s~Y2X!, Ẏ5rX2Y2XZ, Ż5XY2bZ, ~6!

where (s,r ,b)5(16,45.6,4). The matrix (dFi /dgk) with g
5(X,Y,Z) for Eq. ~6! is

S 2s s 0

r 2Z 21 2X

Y X 2b
D .

This matrix has four variable terms. SoK has to have at leas
four terms corresponding to these terms. The other cons
terms ofK can be zero by an appropriate choice of terms
A. This means thatK will contain just one term~the simplest
3709 © 1997 The American Physical Society
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form! if the nonlinearity in the system is represented just
one term of one variable~see the example for the Duffin
oscillator below!.

In addition A has to have a parameter,p, that can be
adjusted in order that its eigenvalues have a negative
part. The parameterp is set in one position of variable term
in (dFi /dgk) in order to keep the number of terms inK to no
more than four~for this case!. Now, the matrix is

A5S 2s s 0

r 1p 21 0

0 0 2b
D , ~7!

and the drived~slave! system is

ẋ5s~y2x!,

ẏ5rx2y2xz1S~ t !@X~z2Z!1~Z1p!~x2X!#,

ż5xy2bz1S~ t !@2X~y2Y!2Y~x2X!#, ~8!

wherep is a parameter that has to be determined in orde
have (x,y,z)→(X,Y,Z). S(t)50 or 1 as a switch.

The matrix~7! has eigenvalues with a negative real par

p,12r . ~9!

Let us noteu5(u1 ,u2 ,u3)5(x2X,y2Y,z2Z). For u
the system can be obtained

u̇15s~u22u1!, u̇25~r 1p!u12u22u1u3 ,

u̇352bu31u1u2 .

Choosing the Liapunov functionL51/2(u1
21u2

21u3
2), we

have

dL

dt
52@su1

21u2
22~r 1s1p!u1u2#2bu3

2.

The conditiondL/dt,0 gives us

2A4s2r 2s,p,A4s2r 2s. ~10!

FIG. 1. Y(t) and y(t) described by Eqs.~6! and ~8!, respec-
tively; initial conditions X(0)5Y(0)5Z(0)51; x(0)5y(0)
5z(0)525. S50 for the first 1850 time steps,S51 afterwards.
Time step50.001.p5260. There is no noise.
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So for anyp given by Eq.~10! and any initial conditions of
Eqs. ~6! and ~8!, u→0, it means that (x,y,z)→(X,Y,Z).
Both conditions~9! and~~10!! assure (x,y,z)→(X,Y,Z), but
while condition ~9! is for small enough@x(0)2X(0),y(0)
2Y(0),z(0)2Z(0)#, condition~10! is for any initial condi-
tions of the systems~6! and~8!. This can be verified numeri
cally ~see Fig. 1!. If the initial conditions are very differen
then the driving term can be large but once the coupling
set on the difference is smaller and smaller. If we can do
small drivings we have to wait until the difference betwe
the two states is small and then to setS51. For chaotic
systems with one attractor and for any initial conditions
the true systems sooner or later will appear a situation w
the two systems are close enough in order to putS51. For
chaotic systems with many attractors and if the dynamics
on different attractors, the method works too, but the driv
term can be large for a short time@18#.

The method can be applied to the synchronization of t
drived Duffing oscillators. Kapitaniak@11# successfully syn-
chronized two identical oscillators using a simple feedba

Ẍ1aẊ1X35B cost, ~11!

ẍ1aẋ1x35B cost1K~X2x!, ~118!

with a50.1, B510 and 0.01,K,0.1 determined numeri-
cally. The present method can do the same synchroniza

Ẍ1aẊ1X35B cost, ~12!

ẍ1aẋ1x35B cost1~3X22p!~x2X!, ~13!

for any a.0 and p.0 ~this result can be proved just b
subtracting the above relations and keeping only linear te
in u5x2X!. It can be observed that the above coupling
practical. A direct application of OPCL@15# gives a driving
in velocity equation that is hard to realize. This is the ma
result obtained by a proper choice of the matrixA.

In addition, if we add a noise term

Cr, ~14!

FIG. 2. The same as in Fig. 1, but each equation of Eqs.~6! and
~8! is completed additively with a noise term~14! C5500.



e
e
t.

is

f

g
ven

the
a

yn-

yn-

it
iri-
of
n-
re

ght
at
G.

sa-
the

.

56 3711BRIEF REPORTS
where r is a random numberP~21,1!, in each equation of
Eqs.~6! and~8!, we still have synchronization for very larg
C ~see Fig. 2!. For C5500 the slave system follows th
master system in a reasonable manner; so it looks robus

It seems that is not so evident to write a control for d
crete systems equivalent with Eqs.~2!–~5!. Nevertheless we
can synchronize two logistic dynamics.

The master system

Xn115cXn~12Xn! ~15!

and the slave~driven! system is

xn115cxn~12xn!1S@p2c~122Xn!#~xn2Xn!, ~16!

with c53.88 andupu,1.
With un5xn2Xn from Eqs.~15! and ~16! we have

un115pun2cun
2. ~17!

A Liapunov functionL(u)5u2 and the condition@19#

L~un11!2L~un!,0 ~18!

gives the result

p21

c
,un,

p11

c
~19!

in order to haveun→0. Relation~19! gives the dimension o
the basin of entrainment. So for anyun5xn2Xn , respecting
Eq. ~19!, the sinchronization is obtained~Fig. 3!. If we can

FIG. 3. 2Xn @described by Eq.~15!# andxn @described by Eq.
~16!# vs n, respectively.S50 for the first 20 iterations.X150.77,
x150.55,c53.88,p50.1. There is no noise. (Xn ,n) is marked by
a big circle and (xn ,n) by a small one.
fe
-

manage just small drivingsDn5S@p2c(122Xn)#(xn
2Xn), we have to wait untilxn2Xn is small enough and
then we can putS51. Once the coupling is set on the drivin
decreases. In addition, the synchronization is obtained e
if Eq. ~16! is modified like~see Fig. 4!

xn115cxn~12xn!1S$@a1r1p2c~122Xn!#

3~xn2Xn!1a2r%, ~20!

where r is a uniform random number between21 and 1.
This result led us to label this synchronization as robust.

It seems that the above results give a partial answer to
unpredictibility problem of chaotic systems: if we have
previous recording of a dynamics we can reach it by s
chronization even in a noisy environment.

In conclusion, this paper presents a new method of s
chronization based on the OPCL method of control@15#. The
synchronization is realized with a precise coupling—so
does not need any trial and error, physical intuition, emp
cal determination of proportionality factor, calculation
conditional Liapunov exponents, etc. In addition, the sy
chronization is still obtained in a high level noise. There a
no limitations on the dimensions of the systems.
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FIG. 4. 2Xn @described by Eq.~15!# andxn @described by Eq.
~20!# vs n with a150.04,a250.04; p, c, S are the same as in Fig
3.
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